Package: REN 0.1.0
REN: Regularization Ensemble for Robust Portfolio Optimization
Portfolio optimization is achieved through a combination of regularization techniques and ensemble methods that are designed to generate stable out-of-sample return predictions, particularly in the presence of strong correlations among assets. The package includes functions for data preparation, parallel processing, and portfolio analysis using methods such as Mean-Variance, James-Stein, LASSO, Ridge Regression, and Equal Weighting. It also provides visualization tools and performance metrics, such as the Sharpe ratio, volatility, and maximum drawdown, to assess the results.
Authors:
REN_0.1.0.tar.gz
REN_0.1.0.zip(r-4.5)REN_0.1.0.zip(r-4.4)REN_0.1.0.zip(r-4.3)
REN_0.1.0.tgz(r-4.4-any)REN_0.1.0.tgz(r-4.3-any)
REN_0.1.0.tar.gz(r-4.5-noble)REN_0.1.0.tar.gz(r-4.4-noble)
REN_0.1.0.tgz(r-4.4-emscripten)REN_0.1.0.tgz(r-4.3-emscripten)
REN.pdf |REN.html✨
REN/json (API)
NEWS
# Install 'REN' in R: |
install.packages('REN', repos = c('https://bonsook.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/bonsook/ren/issues
- FF25 - FF25 Dataset
Last updated 1 months agofrom:fe43a89ce0. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 14 2024 |
R-4.5-win | OK | Nov 14 2024 |
R-4.5-linux | OK | Nov 14 2024 |
R-4.4-win | OK | Nov 14 2024 |
R-4.4-mac | OK | Nov 14 2024 |
R-4.3-win | OK | Nov 14 2024 |
R-4.3-mac | OK | Nov 14 2024 |
Exports:buh.clustinsert.atperform_analysispo.avgpo.bhupo.colspo.covShrinkpo.grossExppo.JMpo.SWpo.SW.lassopo.TZTprepare_datarensetup_parallel
Dependencies:clicodetoolscolorspacecorpcorcpp11doParallelfansifarverforeachgenericsggplot2glmnetgluegtableisobanditeratorslabelinglatticelifecyclelubridatemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigplyrquadprogR6RColorBrewerRcppRcppEigenreshape2rlangscalesshapestringistringrsurvivaltibbletictoctimechangeutf8vctrsviridisLitewithr